Name of teacher – Jagjit Kaur Class –B.A, B.COM (IST SEM) PAPER- MDC (PHYSICS FUNDAMENTALS)

MONTH	UNIT NAME	ARTICLES COVERED
JULY & AUGUST	Physics-	Nature, scope & excitement, Major discoveries in physics, major contribution by Indian Physicists, Fundamental physical constants, Physics in relation to other sciences, impact of physics on society and on latest development in science & technology. System of Measuring Units-Need for measurement, measuring process, concept of mass, length, time; Fundamental and derive units, system of units, concepts of error, types of error (only definition), Accuracy and precision in measurement, least count and applications of measuring instruments -Vernier caliper, Screw Gauge
SEPTEMBER	Motion of objects in one dimension	position of the object, origin/reference point, frame of reference, definitions and examples of motion in one, two and three dimension, Scalar and Vector quantities, description of motion along a straight line- distance and displacement, uniform motion and nonuniform motion, average and instantaneous speed, average and instantaneous velocity, acceleration; graphical analysis of straight line motion- distance- time graph, velocity-time graph, equation of motions and their applications.
OCTOBER	Causes of motion	concept of force, Newton's 1st law of motion, inertia and mass; Newton's 2nd law of motion, momentum and force; 3rd law of motion, daily life applications of Newton's laws of motion. Universal law of gravitation and its importance, acceleration due to gravity and free fall of a body; mass and weight of an object on earth and moon, concept of thrust and pressure and importance in daily life, buoyancy and Archimedes principle-the physics behind floating of objects on water.
NOVEMBER	Work, energy	Work, energy, types of energy-Kinetic energy and Potential energy, P.E. of an object at a height; law of conservation of energy and its applications. Conservation of linear and angular momentum, collision (elastic and inelastic) and conservation laws in collisions- importance in daily life; concepts of center of mass-Physics behind cycling, rock climbing and skating.

Dlikh

Name of teacher- Pervinder Kaur

Class –B.Sc 1ST SEM (Medical)

PAPER- Mechanics

MONTH	UNIT NAME	ARTICLE COVERED
July & August	Fundamentals of Dynamics	Rigid body, Moment of Inertia, Radius of Gyration, Theorems of perpendicular and parallel axis (with proof), Moment of Inertia of ring, Disc, Angular Disc, Solid cylinder.
September	Elasticity	Elasticity: Deforming force, Elastic limit, stress, strain and their types, Hooks law, Module of elasticity Relation between shear angle and angle of twist, Poisson's ratio and its limiting value. Torque required for twisting
OCTOBER	Special Theory of Relativity	outcomes, Postulates of special theory of relativity, Lorentz Transformations, Lorentz contraction, Time dilation, Relativistic transformation of velocity, relativistic addition of velocities, variation of mass-energy equivalence
NOVEMBER	Gravitation and central force motion	Gravitation and central force motion: Law of gravitation, Potential and field due to spherical shell and solid sphere. Motion of a particle under central force field, Normal coordinates and normal modes, Normal modes of vibration for given spring mass system, possible angular frequencies of oscillation of two identical simple pendulums of length (I) and small bob of mass (m0 joined together with spring of spring constant (k).

blish'

Name of teacher- Pervinder Kaur

Class -B.Sc 1ST SEM

PAPER- Mechanics

MONTH	UNIT NAME	ARTICLE COVERED
July & August	Fundamentals of Dynamics	Rigid body, Moment of Inertia, Radius of Gyration, Theorems of perpendicular and parallel axis (with proof), Moment of Inertia of ring, Disc, Angular Disc, Solid cylinder, Solid sphere, Hollow sphere, Rectangular plate, Square plate, Solid cone, Triangular plate, Torque, Rotational Kinetic Energy, Angular momentum, Law of conservation of angular momentum, Rolling motion, condition for pure rolling, acceleration of body rolling down an inclined plane, Flywheel, Moment of Inertia of an irregular body.
September	Elasticity	Deforming force, Elastic limit, stress, strain and their types, Hooke's law, Modulus of rigidity, Relation between shear angle and angle of twist, elastic energy stored/volume in an elastic body, Elongation produced in heavy rod due to its own weight and elastic potential energy stored in it, Tension in rotating rod, Poisson's ratio and its limiting value, Elastic Constants and their relations. Torque required for twisting cylinder, Hollow shaft is stiffer than solid one. Bending of beam, bending moment and its magnitude, Flexural rigidity, Geometrical moment of inertia for beam of rectangular cross-section and circular cross-section. Bending of cantilever (loaded by a weight W at its free end), weight of cantilever uniformly distributed over its entire length. Dispersion of a centrally loaded beam supported at its ends, determination of elastic constants for
OCTOBER	Special Theory of Relativity	Michelson's Morley experiment and its outcomes, Postulates of special theory of relativity, Lorentz Transformations, Simultaneity and order of events, Lorentz contraction, Time dilation, Relativistic transformation of velocity, relativistic addition of velocities, variation of mass-energy equivalence, relativistic Doppler effect, relativistic kinematics, transformation of energy and momentum, transformation of force, Problems of relativistic dynamics
NOVEMBER	Gravitation and central force motion	Law of gravitation, Potential and field due to spherical shell and solid sphere. Motion of a particle under central force field, Two body problem and its reduction to one body problem and its solution, compound pendulum or physical pendulum in form of elliptical lamina and expression of time period, determination of g by means of bar pendulum, Normal coordinates and normal modes, Normal modes of vibration for given spring mass system, possible angular frequencies of oscillation of two identical simple pendulums of length (I) and small bob of mass (m0 joined together with spring of spring constant)

llish'

Name of teacher- Pervinder Kaur Class –B.Sc 3RD SEM PAPER- Computer programming and thermodynamics

MONTH	UNIT NAME	ARTICLE COVERED
July &	UNIT-1: Computer	Computer organization, Binary representation, Algorithm development, Flow
August	Programming	charts and their interpretation. FORTRAN Preliminaries: Integer and floating point
	(A)	arithmetic expression, built in functions, executable and non-executable
		statements, input and output statements, Formats, IF, DO and GO TO statements,
		Dimension arrays, statement function and function subprogram.
September	Applications of	Algorithm, Flow Chart and Programming for Print out of natural numbers, Range
	FORTRAN	of the set of given numbers, Ascending and descending order, Mean and standard
	programming	deviation, Least square fitting of curve, Roots of quadratic equation, Product of
		two matrices, Numerical integration (Trapezoidal rule and Simpson 1/3 rule).
OCTOBER	Thermodynamics-I	Thermodynamic system and Zeroth law of thermodynamics. First law of
		thermodynamics and its limitations, reversible and irreversible process. Second
		law of thermodynamics and its significance, Carnot theorem, Absolute scale of
		temperature, Absolute Zero and magnitude of each division on work scale and
		perfect gas scale, Joule's free expansion, , Joule Thomson effect, Joule-Thomson
		(Porous plug) experiment, conclusions and explanation, analytical treatment of
		Joule Thomson effect. Entropy, calculations of entropy of reversible and
		irreversible process, T-S diagram, entropy of a perfect gas, Nernst heat law(third
		law of thermodynamics), Liquefaction of gases, (oxygen, air, hydrogen and
		helium), Solidification of He below 4K, Cooling by adiabatic demagnetization.
NOVEMBER	Thermodynamics-II	Derivation of Clausius-Clapeyron and Clausius latent heat equation and their
		significance, specific heat of saturated vapours, phase diagrame and triple point of
		a substance, development of Maxwell thermodynamical relations.
		Thermodynamical functions: Internal energy (U), Helmholtz function (F), Enthalpy
	, .	(H), Gibbs function (G) and the relations between them, derivation of Maxwell
		thermodynamical relations from thermodynamical functions, Application of
		Maxwell relations: relations between two specific heats of gas, Derivation of
	n 2 2 2 1 1	Clausius-Clapeyron and Clausius equation, variation of intrinsic energy with
	200	volume for (i) perfect gas (ii) Vanderwall gas (iii) solids and liquids, derivation of
	#	Stefans law, adiabatic compression and expention of g

Name of teacher – Jagjit Kaur

Class -B.Sc 3RD SEM

PAPER- Wave and optics I

MONTH	UNIT NAME	ARTICLE COVERED
JULY & AUGUST	Interference I	Interference by Division of Wave front: Young's double slit experiment, Coherence, Conditions of interference, Fresnel's biprism and its applications to determine the wavelength of sodium light and thickness of a mica sheet, Lloyd's mirror, Difference between Bi-prism and Llyod mirror fringes, phase change on reflection.
SEPTEMBER	Interference II	Interference by Division of Amplitude: Plane parallel thin film, production of colors in thin films, classification of fringes in films, Interference due to transmitted light and reflected light, wedge shaped film, Newton's rings, Interferometer: Michelson's interferometer and its applications to (i) Standardization of a meter (ii) determination of wavelength.
OCTOBER	Diffraction I	Fresnel's diffraction: Fresnel's assumptions and half period zones, rectilinear propagation of light, zone plate, diffraction at a straight edge, rectangular slit and circular aperture, diffraction due to a narrow slit and wire.
NOVEMBER	Diffraction II	Fraunhoffer diffraction: single-slit diffraction, double-slit diffraction, N-slit diffraction, plane transmission granting spectrum, dispersive power of grating, limit of resolution, Rayleigh's criterion, resolving power of telescope and a grating. Differences between prism and grating spectra.

Jagjut

Mish

Name of teacher – Jagjit Kaur

Class -B.Sc 3RD SEM

PAPER- Wave and optics I

MONTH	UNIT NAME	ARTICLE COVERED
JULY & AUGUST	Interference I	Interference by Division of Wave front: Young's double slit experiment, Coherence, Conditions of interference, Fresnel's biprism and its applications to determine the wavelength of sodium light and thickness of a mica sheet Lloyd's mirror, Difference between Bi-prism and Llyod mirror fringes, phase change on reflection.
SEPTEMBER	Interference II	Interference by Division of Amplitude: Plane parallel thin film, production of colors in thin films, classification of fringes in films, Interference due to transmitted light and reflected light, wedge shaped film, Newton's rings, Interferometer: Michelson's interferometer and its applications to (i) Standardization of a meter (ii) determination of wavelength.
OCTOBER	Diffraction I	Fresnel's diffraction: Fresnel's assumptions and half period zones, rectilinear propagation of light, zone plate, diffraction at a straight edge, rectangular slit and circular aperture, diffraction due to a narrow slit and wire.
NOVEMBER	Diffraction II	Fraunhoffer diffraction: single-slit diffraction, double-slit diffraction, N-slit diffraction, plane transmission granting spectrum, dispersive power of grating, limit of resolution, Rayleigh's criterion, resolving power of telescope and a grating. Differences between prism and grating spectra.

Jagjut

list

Name of teacher - Jagjit Kaur

Class -B.Sc 5TH SEM

PAPER- Nuclear Physics

MONTH	UNIT NAME	ARTICLES COVERED	
JULY & AUGUST	Nuclear Structure and Properties of Nuclei	Nuclear composition (p-e and p-n hypotheses), Nuclear properties; Nuclear size, spin, parity, statistics, magnetic dipole moment, quadruple moment (shape concept). Determination of mass by Bain-Bridge, Bain-Bridge and Jordan mass spectrograph. Determination of charge by Mosley Law. Determination of size of nuclei by Rutherford Back Scattering. mass and binding energy, systematic of nuclear binding energy, nuclear stability	
SEPTEMBER	Nuclear Radiation decay Processes	Alpha-disintegration and its theory. Energetics of alphadecay, Origin of continuous beta spectrum (neutrino hypothesis), types of beta-decay and energetics of beta-decay. Nature of gamma rays, Energetics of gamma rays. Interaction of heavy charged particles (Alpha particles); Energy loss of heavy charged particle (idea of Bethe formula no derivation), Range and straggling of alpha particles. Geiger-Nuttal law. Interaction of light charged particle (Beta particle), Energy loss of beta-particles (ionization), Range of electrons, absorption of beta-particles. Interaction of Gamma Ray; Passage of Gamma radiations through matter (Photoelectric, Compton and pair production effect) electron-positron annihilation. Absorption of Gamma rays (Mass attenuation coefficient) and its application.	
OCTOBER	Nuclear Accelerators	Linear accelerator, Tendem accelerator, Cyclotron and Betatron accelerators. Nuclear Radiation Detectors. Gas filled counters; Ionization chamber, proportional counter, G.M. Counter (detailed study), Scintillation counter and semiconductor detector.	
NOVEMBER	Nuclear reactions.	Nuclear reactions, Elastic scattering, Inelastic scattering, Nuclear disintegration, Photonuclear reaction, Radiative capture, Direct reaction, Heavy ion reactions and spallation Reactions. Conservation laws, Q-value and reaction threshold. Nuclear Reactors. Nuclear Reactors, General aspects of Reactor Design. Nuclear fission and fusion reactors, (Principle, construction, working and use).	

Mish

Name of teacher- Pervinder Kaur

Class -B.Sc 5TH SEM

PAPER- Quantum and Laser Physics

MONTH	UNIT NAME	ARTICLES COVERED
July & August	Origin of quantum physics	Overview, scale of quantum physics, boundary between classical and quantum phenomena, Photon, Photoelectric effect, Compton effect (theory and result), FrankHertz experiment, de-Broglie hypothesis. Davisson and Germer experiment, ·G.P. Thomson experiment. Phase velocity, group velocity and their relation. Heisenberg's uncertainty principle. Time energy and angular momentum, position uncertainty. Uncertainty principle from de Broglie wave. (Wave-particle duality). Gamma Ray Microscope, Electron diffraction from a slit. Derivation of 1-D time-dependent Schrodinger wave equation (subject to force, free particle). Time-independent Schrodinger wave equation, eigen values, eigen functions, wave functions and its significance. Orthogonality and Normalization of function, concept of observer and operator.
September	Application of Schrodinger wave equation	(i) Free particle in one-dimensional box (solution of Schrodinger wave equation, eigen functions, eigen values, quantization of energy and momentum, nodes and anti nodes, zero point energy). (ii) One dimensional step potential E > Vo (Reflection and Transmission coefficient) (iii) One dimensional step potential E < Vo (penetration depth calculation). (iv) One dimensional potential barrier, E > Vo (Reflection and Transmission coefficient) (v) One-dimensional potential barrier, E < Vo (penetration or tunneling coefficient). (vi) Solution of Schrodinger equation for harmonic oscillator (quantical)
OCTOBER	Laser Physics	Zero-point energy, wave equation for ground state and excited states) Absorption and emission of radiation, Main features of a laser: Directionality, high intensity, high degree of coherence, spatial and temporal coherence, Einstein's coefficients and possibility of amplification, momentum transfer, life time of a level, kinetics of optical absorption ((two and three level rate equation, Fuchbauer landerburg formula).population inversion: A necessary condition for light amplification, resonance cavity, laser pumping, Threshold condition for laser emission, line broadening mechanism, homogeneous and inhomogeneous line broadening (natural, collision and Doppler broadening).
NOVEMBER BECEMBER	Laser Physics – II	: He-Ne laser and RUBY laser (Principle, Construction and working), Optical properties of semiconductor, Semiconductor laser (Principle, Construction and working), Applications of lasers in the field of medicine and industry

